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1. Introduction
Neural networks can achieve state-of-the-art perfor-

mance on computer vision tasks when they have ample data
and the training and deployment environments are similar
[1–4]. However, in real-world scenarios (e.g. autonomous
driving or medical diagnosis), labeled data for training is
often limited and expensive to obtain [5]. In addition, the
environments in which models are deployed can rapidly
evolve in unexpected ways. In such complex changing

environments, existing neural network models can fail to
achieve adequate predictive performance.

To meet these real-world challenges, we design domain
adaptation algorithms that aim to better generalize neural
networks to previously-unseen visual settings, given a min-
imal amount of data and human supervision. Our methods
help neural networks identify informative unseen data for
labeling and adapt to new conditions in real time. In par-
ticular, we extend both semi-supervised (active) and unsu-
pervised (continual, continuous) domain adaptation meth-
ods to the task of semantic segmentation, by which images
are automatically labeled with classes at the pixel level. Se-
mantic segmentation is a critical task for autonomous driv-
ing and therefore currently an important and highly active
area of research in computer vision. Finally, we propose
a novel combined method, active continual continuous do-
main adaptation (ACCDA), that enables neural networks to
learn on the fly within continuously changing visual set-
tings. Our work therefore improves upon the training ef-
ficiency and scalability of autonomous driving models.

In the following section we conduct a literature review
that provides context for our work. Then, in section 3, we
discuss different methodologies we make use of, and dis-
cuss how we contribute to and extend these methodologies.
In section 4, we detail our experiments and results, and then
finally, in section 5, we summarize our findings and discuss
next steps for our work.

2. Context and Literature Review

2.1. Semantic Segmentation

Semantic segmentation is a computer vision task that
classifies classes in images (i.e. objects, people, textures) at
the pixel level. State-of-the-art algorithms for semantic seg-
mentation use deep learning because of the high quality re-
sults that these algorithms have produced in recent years [7].
These models typically apply a method of scaling down, or
down-sampling, input images to produce feature represen-
tations, and then apply a method to scale up, or up-sample,
these feature representations and produce predictions at the
original image’s dimensions. See Figure 2 for a visual ex-
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Figure 1. An illustration of our proposed Active Continuous Continual Domain Adaptation (ACCDA) algorithm.

Figure 2. An example of an “encoder-decoder” semantic segmen-
tation model which “encodes”, or down-samples, to compress the
image to a set of features, and then “decodes”, or up-samples, to
produce the pixel-wise output [6].

ample of this process. One of the most popular semantic
segmentation models today is called DeepLabv3+ [8]. We
use this model extensively in our work.

2.2. Active Learning

In active learning, a learning algorithm can interactively
query a human (often referred to as an oracle) to obtain
ground-truth labels [9]. This approach is useful when there
is a substantial quantity of unlabeled data and the task of
labeling that data is expensive. Such is the case for the task
of semantic segmentation, where ground-truth labels are de-
fined at the pixel level, and it can therefore take many hours
to annotate a batch of labels for training.

State-of-the-art active learning tends to make use of ei-

ther synthesized or pool-based methods for generating sam-
ples [10]. For instance, with a synthesized approach, gen-
erative adversarial networks (GANs) can be used to gener-
ate new, informative samples based on the sample distribu-
tions of existing data. Pool-based approaches, on the other
hand, use representative samples from the unlabeled data
and suggest them to an oracle for labeling. Pool-based ap-
proaches often use uncertainty and diversity cues to deter-
mine how best to sample data, with many recent approaches
using both uncertainty and diversity cues [11]. We study
several pool-based approaches in this paper, such as Active
Adversarial Domain Adaptation (AADA) [12] and ADA-
CLUE [11], in order to identify effective active learning
strategies that can be applied to semantic segmentation. We
provide further details about these methodologies in section
2.3.1.

2.3. Domain Adaptation

Domain adaptation (DA) is a technique which takes an
algorithm trained on one domain, called the source domain,
and optimizes its performance to a new target domain [13].
The target domain is typically unlabeled or partially labeled,
and the target data distribution can be accessed during DA.
Within the context of semantic segmentation, unsupervised
DA is a popular approach as it does not require any target
domain labels.

One application that we explore in our work is au-
tonomous driving. To use supervised learning for this task,
an extensive number of well-labelled data is typically re-
quired. In addition, data should span different environ-
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Figure 3. Neural network trained on well-labeled source domains
can be adapted to perform well on unseen target domains.

ments, weather conditions, and lighting conditions. The po-
tential cost of collecting and labeling such data therefore
makes supervised domain adaptation difficult to deploy and
scale.

In comparison, unsupervised, or semi-supervised do-
main adaptation methods are aimed at quantifying the dis-
crepancy between the distributions of a source domain and
target domain, and maximally aligning features from the
two domains with minimal external supervision.

One widely-used discrepancy measurement for unsuper-
vised DA is maximum mean discrepancy (MMD). We im-
plement it in our continuous DA model, and discuss techni-
cal details in section 3.4.

Other typical techniques include adversarial approaches
using discriminative adversarial neural networks and self-
training with pseudo-labels [14]. As one of essential base-
line models in our work, AdaptSegNet [15] is a popular
unsupervised DA algorithm which uses an adversarial ap-
proach. We provide more details about this approach in
section 3.1.

2.3.1 Active Domain Adaptation

Recently, researchers have begun to combine active learn-
ing and domain adaptation for image classification, ob-
ject detection, and semantic segmentation tasks [11,12,16].
This helps improve DA performance on challenging domain
shifts and therefore allows DA to be more applicable within
real-world settings. As was the case for DA, active DA
approaches tend to follow one of two patterns: adversar-
ial learning and pseudo-label cluster-based learning. Active
DA has only recently been applied to the semantic segmen-
tation task, so there is still much room for improvement.
Our contribution to this area is to improve upon these active
DA approaches for the task of semantic segmentation.

For instance, the first method to successfully apply
active domain adaptation to the task of semantic segmen-
tation is MADA, which utilizes a multi-anchor strategy
to characterize source and target distributions in two

Figure 4. A visual representation of the active domain adaptation
algorithm from [12]. The model selects a few target samples for
an oracle (usually a human) to acquire labels.

stages [16]. We experiment with making improvements to
MADA in section 3.3.

2.3.2 Continuous Domain Adaptation

Figure 5. Significant differences caused by changes in lighting
conditions. There is a large gap between the appearance of day-
time and nighttime environments, but it is caused by small shifts
and gradual changes.

In general, when the visual environment significantly
changes, like from day to night, a model’s performance de-
grades. However, large gaps usually come from the accu-
mulation of continuous shifts, which can be shown in Fig. 5.
We want our model to capture these small shifts by learn-
ing from seen tasks, and adapting to multiple and gradually
changing target domains. In the case of learning from seen
tasks, catastrophic forgetting [17] is a dominant problem for
continuous domain adaptation. Traditional neural network
structures have a tendency to overwrite past knowledge with
the latest knowledge, which can lead to poor performance
in a continual setting.

Therefore, there is a need for a buffer structure to re-
play previously-seen images. A replay buffer is a popu-
lar method in reinforcement learning to prevent forgetting,
improve network’s robustness by sampling, and boost cal-
culation efficiency. There are usually two stages to a re-
play buffer - how to store experience and how to replay old
knowledge. Accordingly, we present a novel replay buffer

3



Figure 6. Illustration of two domains that gradually shift from
source (images from the year 2009) to target (images from the
year 2020) [18].

that is entropy-based and image-based to further enhance its
performance. More details are discussed in section 3.4.

2.3.3 Active Gradual Domain Adaptation

One piece of research that is relevant to our proposed AC-
CDA algorithm is an image classification algorithm is called
Active Gradual Domain Adaptation (AGDA) [18]. This ap-
proach makes use of an uncertainty and diversity based ac-
tive learning strategy to adapt to a set of gradually shifting
visual environments, which are illustrated in Figure 6. This
figure provides examples of images in the source and target
datasets used for AGDA. It illustrates how different classes
of objects, such as electronic devices and vehicles, evolve
slowly over time between 2009 and 2020. The AGDA al-
gorithm is able to outperform models trained only on data
from the source domain as well as unsupervised domain
adaptation models trained on the target domain. Perfor-
mance of these other methods has been shown to degrade
relative to AGDA as the distance between source and target
domains grows.

2.4. Continual Learning

Continual learning, or lifelong learning, is a machine
learning approach that aims to progressively adapt to new
target domains by accumulating knowledge from previous
experience [19–21]. Existing research on continual learning
attempts to address the problem of catastrophic forgetting
while adjusting to new tasks/domains. Another interesting
approach is the dynamic expansion of neural network ca-
pacity to adapt to new tasks/domains [22]. In our work, we
focused on using reinforcement learning methods to train
policies for optimal selection of training samples to store in
the replay buffer that can be used to to avoid catastrophic
forgetting (details in section 3.4).

3. Methodology
3.1. AdaptSegNet

AdaptSegNet [15] is an adversarial DA approach which
trains a fully-convolutional discriminator network D to
learn the difference between source and target domains.
The first step is to train the semantic segmentation network,
which acts as the generator G within the adversarial learn-
ing setup. Next, G’s segmentation prediction is fed to D,
which attempts to correctly classify whether it is coming
from the source or target domain. The loss function for this
joint learning process is:

L(Is, It) = Lseg(Is) + λadvLadv(It) (1)

where Is and It are source and target images, respectively,
Lseg is the cross-entropy loss learned by G in the source
domain, and Ladv is the adversarial loss learned by D. λadv

is a weight that balances the losses. Finally, the loss is opti-
mized with a min-max objective:

max
D

min
G

L(Is, It) (2)

Given this objective, G will attempt to reduce it’s loss
with respect to its objective and improve predictions on the
source images. At the same time, it will attempt to “fool”
D into classifying target predictions as source predictions.
This has the effect of reducing the gap between the source
and target domains. We use AdaptSegNet as the first step
for both our active domain adaptation and continuous, con-
tinual domain adaptation approaches.

3.2. Active Adversarial Domain Adaptation
(AADA)

Since AADA and AdaptSegNet both include an adver-
sarial unsupervised DA step, AdaptSegNet can be used as
a starting point for implementing AADA [12]. The output
of the adversarial network is an input to the active learning
sample selection step, which aims to find the most informa-
tive labels for sampling. The sampling criterion s(x) for
choosing labels from the unlabeled target dataset is defined
as:

s(x) =
1−Gd(Gf (x))

Gd(Gf (x))
H(Gy(Gf (x))) (3)

where Gd(Gf (x)) and Gy(Gf (x)) are the predictions made
by discriminator D and generator G, respectively, and
H(Gy(Gf (x))) indicates the entropy of G’s predictions. In
this sampling strategy, 1−Gd(Gf (x))

Gd(Gf (x))
is the diversity cue, and

the entropy term is the uncertainty cue. This sampling strat-
egy is applied per batch, and assumes that Gd(Gf (x)) and
Gy(Gf (x)) are scalar values. This is not the case for se-
mantic segmentation, where G and D both produce pixel
predictions at the original image’s dimensions.
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We discuss our experiments with extending AADA to the
task of semantic segmentation in the next section where we
discuss experiments and results.

3.3. Multi-Anchor Domain Adaptation (MADA)

MADA, an active domain adaptation method proposed in
[16], outperforms other active domain adaptation methods
for the task of semantic segmentation. It uses a multi-anchor
strategy to efficiently capture the multi-model distribution
of pixel-level features from both source and target and thus
better identifies informative, diverse unlabeled samples than
other methods. MADA was able to effectively adapt the
ImageNet-pretrained DeepLab model from a synthesised
dataset (GTA5) to a real-world dataset (Cityscapes), using
very little training data. Like AADA, MADA also builds
upon AdaptSegNet and extends the adversarial strategy.

In the first stage of MADA, it generates a feature map
F s of the source data xs through adversarial domain adap-
tation and groups these features into clusters represented by
centroid anchors As

k. The unlabeled target samples selected
for label acquisition D(xt) are the ones closest to source
centroids using the following distance calculation:

D(xt) = min
k

||F t(xt)−As
k||22 (4)

In the second stage of MADA, the segmentation model
is fine-tuned with both source data and newly-labeled tar-
get samples. Pseudo labels are computed using cross-
entropy loss, and then K-means clustering is performed to
find centroid anchors for the remaining unlabeled target do-
main data. The final model objective function for semi-
supervised training is thus a combination of segmentation
loss Lseg , pseudo label cross-entropy Lpseudo, and the an-
chor representation score measured by distance Lt

dis:

Lsemi = Lseg + Lpseudo + Lt
dis (5)

We select MADA as our main algorithm for improving
the performance of active domain adaptation for semantic
segmentation. We experiment with making changes to the
active learning sampling criteria used in MADA. Follow-
ing the best practices of active learning theory and other
similar successful active DA methods, such as AADA [12]
and ADA-CLUE [11], we incorporate entropy, which would
indicate the uncertainty of a model’s predictions, into the
strategy. For some intuition for why using both uncer-
tainty and diversity is useful for active learning, see Figure
7. The entropy-only active learning strategy will select the
most uncertain regions of the class distribution for labeling,
however, it appears to over-sample these uncertain portions
of the distribution. A diversity-only strategy, on the other
hand, will select a set of labels that best spans the feature
space, but is not picking up on the most highly-uncertain
data points that the entropy strategy is able to find. The

Figure 7. A visual depiction of the first stage of the MADA al-
gorithm [16]. This is the stage in which active learning sampling
occurs.

Figure 8. Three different active learning strategies, entropy only,
diversity only and entropy + diversity, select different samples
from the target data for an oracle to label [11].

combination of these strategies best spans the distribution
while also identifying the most highly-uncertain data points.

Our final sampling criteria is as follows:

D(xt) = argmax
S,k

K∑
k=1

1

Zk

∑
xϵXk

H(F t(xt))||F t(xt)−At
k||2

(6)
where S is the set of target samples we select; At

k are
the cluster centroids in the target domain; H(F t(xt)), the
entropy term, provides an estimate of the uncertainty of a
segmentation model’s predictions within the target domain;
and Zk is the sum of the entropy terms for each image, such
that we calculate the mean entropy for each image.

3.4. Continuous, Continual Domain Adaptation

3.4.1 Sequential Unsupervised Adaptation

We propose an adaptation model based on the previous
work [23] for multiple continuously shifting domains. Most
existing domain adaptation methods assume a single source
and a single target domain distribution. Usually, these meth-
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ods rely on feature alignment between the source and tar-
get domains, or equivalently learning a mapping between
distributions that minimize some distance measure. Some
of the commonly used distance measures are: Kullback-
Leibler divergence, Maximum Mean Discrepancy, correla-
tion alignment, and adversarial loss.

After a mapping that minimizes the distance between
the source and target domains is learned, the original se-
mantic segmentation classifier for the source distribution
can be applied directly to the target domain after feature
alignment. Any standard classification loss function, such
as cross-entropy loss, is used for the optimization task.

In the case of multiple continuously shifting target do-
mains, running the alignment and adaptation procedure
on a single bundled target domain results in poor perfor-
mance. Thus, we explore adaptation schemas that sequen-
tially adapt a segmentation model to multiple continuously
(gradually) changing target domains. At each iteration, the
current segmentation model will be adapted to the next tar-
get domain. Intuitively, the small changes in target distribu-
tions should make the feature alignment step easier.

In our work, we focus on various experiments using dif-
ferent distance functions between source and target distribu-
tions, as well as methods for selecting, storing, and replay-
ing samples from previous domains to mitigate catastrophic
forgetting.

3.4.2 Our replay buffer

During the adaptation stage, there are multiple target do-
mains that a neural network needs to adapt to. As the adap-
tation stage progresses, the model will apply more weight
to the most recently seen target domains, which may cause
precision loss to domains it encountered previously due
to catastrophic forgetting. Thus, to solve the problem of
catastrophic forgetting, a replay buffer is introduced to our
model. This replay buffer stores the previous target domain
statistics, and is used to replay images from previous do-
mains [24].

Since the replay buffer stores image statistics from dif-
ferent domains, we need to employ a sampling strategy
when dealing with the replay buffer. Random sampling is
one of the most common sampling strategies, but the result
is not representative of the whole domain statistics stored
in the replay buffer. Thus, we adapt a sampling method
based on entropy loss values. Entropy loss value measures
the degree of chaos. A lower entropy loss value indicates a
sample with a lower degree of chaos. Recently, researchers
tend to sample data with the lowest entropy loss values,
because it is easy for models to train on the less chaotic
data. Nonetheless, the less chaotic data cannot represent
the whole dataset. Sampling the data with the lowest and
highest entropy loss values, where 90% of the sampled re-

sult consists of least chaotic data and 10% of it consists of
the most chaotic data, can better represent the whole dataset
and improve the performance of our adaptation stage [25].
We experiment with applying the model with and without a
replay buffer, and also experiment with different sampling
methods in section 4.

One of our baseline models, Unsupervised Model
Adaptation for Continual Semantic Segmentation, used a
statistic-based replay buffer to store the previously learned
knowledge [26]. Specifically, the unsupervised model adap-
tation used a Gaussian Mixture Model (GMM) to compute
the means and co-variances learned so far. Although the
memory requirement for the statistics-based replay buffer
might be less demanding, we need to re-run the algorithm
every time we perform the adaptation stage. Also, this al-
gorithm is not compatible with our proposed sampling al-
gorithm, so we need to convert the original statistics-based
replay buffer.

To solve the problems specified above, we converted the
original statistics-based replay buffer to a image-based re-
play buffer. To accomplish this, we removed the Gaus-
sian Mixture Model (GMM), which is used to compute the
means and co-variances. Instead, we directly read the orig-
inal images in our source domain and put the images into
our replay buffer. Every time we are in the adaptation stage,
we can directly use the images in our replay buffer to feed
into our proposed algorithm.

4. Experiments and Results

4.1. Extending AADA to semantic segmentation

Our first attempt at creating an active DA method that
addresses the task of semantic segmentation was to extend
the AADA method, which was originally designed for im-
age classification tasks and uses adversarial unsupervised
DA. In order to extend this method to semantic segmen-
tation, we used AdaptSegNet, an adversarial unsupervised
DA method designed for semantic segmentation [12,15]. In
the original version of AADA, the active learning sampling
criteria takes as input a set of scalar values that are produced
by the generator and discriminator during the adversarial
unsupervised DA step. However, in semantic segmentation,
the outputs of the generator and discriminator in AdaptSeg-
Net are now pixel maps. So our first task was to determine a
method for compressing these values into scalars that could
be used for active learning sampling. We also tested addi-
tional approaches for computing the sampling criteria. By
making these changes, we hoped to make AADA more suit-
able to the semantic segmentation task. However, we found
that we could not improve the performance of this method
to exceed a random sampling strategy. Around this time, we
also discovered that a novel method called MADA [16] had
just been developed for semantic segmentation, and the au-
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Method road sidewalk building wall fence pole light sign veg terrain sky person rider car truck bus train mbike bicycle mIoU

Random 92.8 64.5 85.8 38.0 34.8 43.7 50.1 56.9 87.9 40.4 87.7 69.0 30.8 89.4 51.1 43.8 21.7 29.9 59.4 56.7
AADA 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3
MADA 92.4 61.4 87.4 39.5 45.9 45.2 50.6 57.5 87.8 42.4 89.2 72.7 44.9 90.0 54.7 50.5 43.4 47.8 66.9 61.6

Our Proposed 93.4 64.9 86.7 39.0 47.8 45.4 50.0 56.7 87.3 44.0 89.9 72.0 44.6 90.4 55.8 54.9 44.0 46.0 65.5 62.3

Table 1. Results of different active domain adaptation methods on GTA5 → Cityscapes in terms of IoU across categories and the overall
mean (mIoU). Each method was trained for 50 epochs, starting from the GTA5 dataset and adapting to the Cityscapes dataset.

thors of the MADA approach developed a version of AADA
for semantic segmentation while working on the MADA ap-
proach. They were able to create a version of AADA that
could outperform a random sampling strategy, but their pro-
posed MADA approach performs even better. The first three
rows of Table 1 detail these results in terms of IoU. Note
that these results have been scaled to a range of 0-100, and
therefore represent percentage values of IoU. All of these
tests are conducted over 50 epochs using the GTA5 dataset
as the source domain and the Cityscapes dataset as the target
domain. In the next section we focus our attention on im-
proving the MADA method given its stronger performance.

4.2. Improving active learning strategy in MADA

We experimented with several formulations of the active
learning sampling strategy in MADA [16]. For instance,
instead of using source cluster centroids As

k to determine
the diversity cue, we used target cluster centroids At

k. We
made this change because it more closely aligns with the de-
sign of other active learning sampling approaches that work
well, such as ADA-CLUE, and is more appropriate for use
in a continuous continual setting, where information from
the target domain is more relevant than information from
the source domain.

We also tried different ways of integrating the entropy
cue H(F t(xt)) into the active learning strategy. One
method we tried was the approach used in ADA-CLUE,
where an entropy weighting is applied during the K-means
clustering step during which At

k is computed. Another ap-
proach is to run the K-means clustering step first, and then
apply the entropy weight after. We experimented with both
and found that the latter approach worked better. Table 1
provides our results for this latter approach, and compares
our proposed approach to several benchmarks: the exist-
ing MADA method, a random sampling strategy, as well as
the version of AADA that the authors of MADA adapted to
the semantic segmentation task. In our testing, our source
domain dataset is the GTA5 dataset and our target domain
dataset is the Cityscapes dataset. We use these datasets in
order to compare our work to the baseline method, MADA.
All experiments are run over 50 training epochs with a 5%
active learning sampling rate.

Our proposed method for active learning outperforms the
existing MADA method by a small margin overall, achiev-
ing an mIoU of 62.3% as compared to the mIoU of 61.6%

that MADA’s active learning strategy achieves. In addi-
tion, our method seems to perform significantly better than
MADA at identifying some specific categories of moving
vehicles that can often appear unexpectedly on the road. For
instance, it outperforms MADA at classifying buses, trucks,
and trains. We plan to continue making improvements to
this method to further improve performance.

4.3. Continuous, Continual Domain Adaptation

We next construct our continual and continuous domain
adaptation model by using unsupervised learning and our
replay buffer on the basis of [23, 26], and select AdaptSeg-
Net [15] as our baseline model. For continuous shifts within
the target domain, we choose 5000 images from the VIPER
dataset that contains driving scenes with lighting condi-
tions that gradually shift from afternoon to night. There-
fore, models are expected to be adapted from the SYNTHIA
dataset to the VIPER dataset. For baseline model - Adapt-
SegNet and our source model only trained in SYNTHIA,
we input continuous target dataset as a single bundled batch.
Fig. 9 shows samples of the prototypical distribution trained
on SYNTHIA.

Figure 9. Samples distribution in embedding space.

We generate the embedding space in Fig. 9 using UMAP,
a visualization method that maps high dimensional data
to lower dimensions [27]. Each color corresponds to a
different class. As discussed in 3.4.2, when training our
adaptation model, we replace the Gaussian Mixture Model
(GMM) with real images and store image samples in the
replay buffer.

Moreover, we divide the target dataset into ten continual
sequences and adapt to a single sequence in each iteration.
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Method road sidewalk building traffic light traffic sign vegetation sky person car bus mIoU

AdaptSegNet 36.3 24.3 32.2 9.4 1.4 27.49 68.24 4.0 27.23 16.4 25
Source-only 46.6 .09 47.5 .09 .01 13.3 73 19.7 86.3 .02 30

Unsupervised 83 38.6 55.4 15.3 0 26.3 84 14.5 85.5 0 41
ACCDA 89.3 57 65.6 55.4 12.1 36.3 91.8 36.8 98.1 .05 58

Table 2. Performance comparison on SYNTHIA → VIPER continuous, continual domain shift between a source-only model (without
domain adaptation), an unsupervised continuous domain adaptation approach (“Unsupervised”), and our semi-supervised active continuous
continual domain adaptation approach (“ACCDA”) which samples 20% of target data per epoch for labeling, and uses a batch size per epoch
of 20 samples. Results are presented in terms of IoU across categories and the overall mean (mIoU).

Features are pre-computed for the source domain and ap-
plied to distance calculations during training. Intersection
over Union (IoU) is a statistical measurement for overlap-
ping area between predictions and ground truth [28], rang-
ing from 0–1 (0–100%).

Experiment results are shown in Table 2. AdaptSeg-
Net [15] achieves 25% mean IoU (mIoU) in this case. Our
model obtains 30% mIoU before adaptation and reaches
41% mIoU after adaptation, which significantly outper-
forms the baseline model.

4.4. Our novel method: ACCDA

Our proposed algorithm, which we are calling Active
Continuous Continual Domain Adaptation or ACCDA, is
similar to Active Gradual Domain Adaptation [18] in that
it also uses an entropy and diversity based active learning
strategy to learn a set of gradually shifting target domains.
However, our approach also makes use of a replay buffer to
remember the source domain, and our task is semantic seg-
mentation rather than image classification. To our knowl-
edge, this is the first active domain adaptation approach de-
signed for continually-shifting domains for the task of se-
mantic segmentation.

Figure 1 provides an illustration to help describe AC-
CDA. As you can see from this illustration, our algorithm
contains three main components: the replay buffer which
remembers the source domain; a continuous, continual se-
ries of target domains; and an active learning strategy which
chooses the best samples for training from the target do-
main. Finally, the algorithm is re-trained with labels se-
lected by active learning and data from our replay buffer in
order to minimize cross entropy loss and produce semantic
segmentation predictions.

The final final loss function for our ACCDA method is
the following:

LACCDA = λ1Lreplay + λ2Lactive (7)

Lreplay = LCE(f(xs), ys) (8)

Lactive = LCE(f(xt), yt) (9)

where Lreplay and Lactive represent the replay buffer
loss and active learning loss, respectively; LCE is the cross-
entropy loss; f(xs) is a semantic segmentation prediction
on source domain data; ys are the source domain labels;
f(xt) is a semantic segmentation prediction on target do-
main data; yt are the target domain labels; and λ1 and λ2

are the loss function weights that trade-off between learning
source data via the replay buffer and target data via active
learning, respectively.

We found that tuning λ2 for our active learning loss func-
tion helped to reduce the overall model’s loss more quickly,
which translated to improvements in our primary metric of
interest, mean IoU, as illustrated in Figure 11. In addition
to loss lambdas, we also tuned other hyperparameters, in-
cluding the active learning rate and batch size for training
on the target domain.

The results of applying our ACCDA method with a 20%
active learning rate and a batch size of 20 samples for the
SYNTHIA → VIPER domain shift are in Table 2. For this
domain shift, ACCDA significantly improves model perfor-
mance, from 41 to 58 mean IoU, when compared with an
unsupervised method, which uses a replay buffer but does
not have access to target labels. When compared to a model
that was only trained on the source domain and does not in-
clude either a replay buffer or active learning, our approach
improves mean IoU from 30 to 58.

While the ACCDA model improves performance across
each category, it shows especially strong improvements for
certain semantic classes that are important to pay attention
for on the road, such as cars, people, and traffic lights. The
performance for cars is particularly good, at 98 out of 100
mIoU. Note that buses did not actually appear in the training
data, hence the low performance.

5. Conclusions and Next Steps
We have proposed ACCDA, a novel domain adaptation

algorithm for the task of semantic segmentation. It com-
bines active learning and a replay buffer to effectively learn
given continuous, continual shifts in visual conditions. We
have also demonstrated strong results for an autonomous
driving use case, improving mean IoU from 30 to 58 on the
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Figure 10. A visual comparison of predicted semantic segmentation labels produced by ACCDA and the Source-only method shows
that our proposed approach greatly improves segmentation performance relative to a method that does not employ domain adaptation. It
effectively captures key semantic classes that are important to pay attention for on the road, such as people, traffic lights, and traffic signs.

Figure 11. Example of improvements observed from tuning λ2,
the weight on the active learning loss function.

SYNTHIA → VIPER domain shift when compared with a
source-only method, and 41 to 58 when compared to an un-
supervised approach which uses a replay buffer. In addition,
each sub-component of ACCDA, namely the replay buffer
and active learning strategy, show improvements in perfor-
mance compared with other state-of-the art methods.

We plan to further tune hyperparameters used in our AC-
CDA and conduct ablation studies to analyze the effects of
these efforts. We will continue to tune the number of train-
ing epochs, learning rate, loss function weights, and batch
size. We also plan to continue experimenting with meth-
ods for improving our active domain adaptation sampling
strategy and will update our results accordingly. For in-
stance, since the clusters we use for the diversity cue in our
proposed strategy are easily influenced by dominant data
points, our method may use a biased representation of the
target domain. We therefore also plan to integrate a region-
based heuristic to better capture the characteristics and spa-
tial adjacency within an image region. This extension is
largely inspired by the concept of region impurity and pre-
diction uncertainty proposed by a recent related work [29].
By combining both pixel-level and region-level features,
our active learning approach could further improve in per-
formance relative to MADA.
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